Выращивание зубов из стволовых клеток
Dcnasadovoy.ru

Медицинский портал

Выращивание зубов из стволовых клеток

Выращивание зубов — миф или реальность

Вот уже много лет в источниках массовой информации периодически появляются сообщения о том, что стало возможным выращивание зубов на месте утраченных или поврежденных. Это, естественно, не может оставить равнодушными людей, для которых отсутствие зубов стало проблемой. Что же происходит в этой области на самом деле?

До сих пор достоверных сведений о том, что выращивание зубов разработано для людей, не обнаружено. Однако многочисленные лаборатории во всем мире плодотворно работают над этой проблемой и уже добились определенных успехов.

Выращивание зубов американскими исследователями

В медицинском центре Колумбийского университета США профессор Джереми Мао и его исследовательская группа разрабатывают новый метод восстановления зубов взамен утраченных. Статья исследователя на эту тему была размещена в журнале Journal of Dental Research.

По методике Мао в челюсьт пациента будет имплантирован каркас из капролактона и гидроксиапатита, являющихся биосовместимыми полимерами. Этот каркас получают методом трехмерной печати, его конструкция предусматривает обилие канальцев диаметром 200 мкм, заполненных специфическими веществами, стимулирующими клеточный рост (stromal-derived factor-1, SDF1) и морфогенным костным белком (bone morphogenetic protein-7, BMP7).

Эти факторы заставляют собственные стволовые клетки пациента вырабатывать ткань зуба, причем в строго указанном направлении, формируя полноценный зуб правильной формы. В итоге получается практически естественным путем выращенный зуб.

Метод протестирован пока только на крысах, но уже теперь видно, что он имеет хорошую перспективу для переноса технологии на человеческий организм. Возможно, уже в скором будущем вместо протезирования в клиниках начнут выращивать новые зубы по методу Джереми Мао.

Выращивание зубов в Японии

В Японии выращивание зубов пошло по другому пути. Они осуществили выращивание полноценного зуба в пробирке и пересадку его в челюсть мыши.

Для выращивания использовались мезенхимальные и эпителиальные клетки мыши. Клеточный материал был помещен в коллагеновый каркас, и после приенения технологий выращивания тканей был получен полноценный зуб величиной 1,3 миллиметра. Он имел вполне сформировавшиеся эмаль, пульпу, дентин, кровеносные сосуды и нервные окончания, был правильной формы и выглядел как обычный зуб мыши.

Этот зуб был имплантирован в челюсть восьминедельной мыши взамен удаленного резца. Подсаженный зуб прижился в челюсти отлично и функционировал как обычный зуб.

Это только первый шаг в разработке новой технологии. Ученые испытывают различные методики выращивания зубов не только на коллагеновой основе, но и на живых тканях, выращенных отдельно in vitro. Целью разработчиков является создание технологии, позволяющей выращивать полноценные органы из нескольких клеток организма.

Исследования выращивания зубов в Украине

В Полтавском Центре трансплантации тканей ученый-генетик Александр Баранович разработал технологию выращивания зубов посредством стволовых клеток. Эта технология уже прошла испытания на первых добровольцах и показала весьма обнадеживающие результаты.

Источником стволовых клеток украинский ученый сделал выпавшие детские молочные зубы. По собственной оригинальной методике он выделяет из них вещество, под воздействием которого клетки десны преобразовываются в ондонтобласты — зародышевые клетки зубов. Под воздействием специальных методик из этих клеток образуются полноценные зубные ткани — дентин, пульпа, эмаль и нервные волокна.

Украинский ученый попытался запатентовать свою технологию выращивания зубов, но оказалось, что подобный метод не так давно уже был запатентован американской стоматологической корпорацией «Adeсkron». На продолжение исследований и разработку собственной оригинальной методики ученому, как всегда, не хватает средств.

Выращивание зубов в России

Не менее трех московских стоматологических сетевых центров уже третий год предлагают желающим опробовать на себе новую методику выращивания зубов. По словам генерального директора одного из этих центров, технология, по которой они работают, разработана отечественными учеными.

Директор утверждает, что за время работы с этой методикой не было ни одного случая негативных последствий выращивания зубов. Однако до сих пор со всех желающих испытать на себе действие технологии выращивания зубов руководство центра берет расписку, что они осведомлены об экспериментальности метода и в случае неудачи клиника не несет за это ответственности.

Хотя с клиентов, согласившихся подвергнуться выращиванию зубов, не берут иной платы, кроме накладных расходов на технологический процесс, тем не менее удовольствие это стоит недешево. Выращивание одного зуба обходится примерно в 3 000 евро. И в желающих недостатка нет, несмотря на такие жесткие условия.

До сих пор ученые не могут гарантировать нормальное развитие выросшего зуба. Дело в том, что после инъекции у пациента вырастает молочный зуб, который через несколько лет выпадает, но будет ли на его месте расти постоянный зуб, клиника гарантировать не может. Зато обещает в случае, если постоянный зуб все же не вырастет, повторить операцию подсадки уже за половинную оплату.

Заменит ли когда-либо выращивание зубов протезирование и имплантацию?

Ученые сегодня разрабатывают способы выращивания зубов у человека из стволовых клеток. Какими технологиями они располагают, и какова цена вопроса окажется для обычного пациента, попробуем описать ниже.

Потеря даже одного зуба в ряду становится ощутимой как на эмоциональном, так и на физиологическом уровне. Восстановить улыбку и жевательную функцию стараются за счет имплантации и протезирования. Но, вполне возможно, что совсем скоро медики предложат не искусственный заменитель, а естественные ткани, приживаемость которых будет в разы выше.

Исторические факты

В стоматологии уже давно задумались над тем, как сделать так, чтобы зуб вырастал в челюсти столько раз, сколько потребуется. Ведь природой заложено всего два таких периода – прорезывание молочных единиц и смена их на постоянные.

Первые научные разработки по выращиванию зубов у человека начались в 2002 году в Великобритании. Для эксперимента использовали шестимесячных поросят и крыс. Памела Йелик проводила следующие манипуляции:

  1. Забирала недозревшие клетки дентальной ткани у животных и помещала в специальные ферменты.
  2. Когда они становились сформированными, то их переносили на пластинку из полимера, которая разлагалась под воздействием развивающихся клеток.
  3. Уже созданные, таким образом, полноценные зачатки вживлялись в мягкие ткани крыс.
  4. Через три месяца можно было заметить появившиеся над десной коронки.

Уже на основе этих данных в Японии решили продвинуться дальше. В 2007 году провели эксперимент в Токийском университете науки под руководством Такаси Тсуджи. Здесь в качестве подопытных выступали мыши. И хоть получилось добиться полного формирования дентина, тем не менее над зубными корнями пришлось потрудиться дополнительно.

Эксперимент продолжился через два года, когда японцы решили применить иную технологию. Для этого они использовали определенные клетки мышей, которые отвечают за рост и развитие зубов от природы. Помещали их в коллагеновую среду и стимулировали рост. После пересадки на место удаленной единицы ученые смогли добиться прорастания полноценного зуба. При этом создавалась не только нужная структура коронки и корня, но и нервно-сосудистый пучок пульпы.

Ген, отвечающий за рост зубов

Ученые обратили внимание на гены, которые регулируют количество единиц у взрослого человека, их появление, порядок, наличие зачатков, структуру и время прорезывания. Вплотную этим вопросом занялись медики в университете Цюриха.

Так, выявлено, что за рост единиц на челюсти отвечает ген под названием Jagged2 и хромосома Notch. Они работают в паре, и когда первый перестает выполнять свою функцию, то второй выдает ошибки.

Еще один ген Osr2 отвечает за формирование структуры и положения коронки зуба. И если каким-то образом его отключить, то они начинают появляться в неположенных и неожиданных местах, вырастают с явными деформациями, а то и вовсе делается волчья пасть.

Ген под названием Msx1 полностью контролирует закладывание зачатков будущих зубов. Именно благодаря ему у нас сначала появляется 20 молочных единиц, а затем они в положенное время меняются на постоянные, и тогда вырастают еще 12. Правда, не у всех людей зачатки сформированы полностью и правильно.

Интересно то, что если отключить вышеперечисленные гены, кроме последнего, то единичные зубы могут все равно прорезаться. А вот если нарушается работа Msx1, то даже зачатки не формируются вовсе. Поэтому ученые взяли на вооружение, что именно этот ген нужно использовать для самостоятельного выращивания зубов.

Зачатки

Как продолжение изучения по восстановлению зубного ряда таким способом профессор Митсиадис пришел к выводу, что активность генов нужно использовать совместно со стволовыми клетками, взятыми из зачатков дентальных тканей. Именно их общая работа приведет к формированию полноценной единицы.

Стволовые клетки способны регенерировать поврежденные ткани, заместить утраченные части собственным делением, поэтому такой способ может стать настоящим прорывом в мире по естественному восстановлению зубов.

Продуманный метод в теории максимально прост:

  • изъятую стволовую клетку помещают в альвеолярную полость, из которой ранее выпал или удален зуб;
  • через некоторое время на этом месте формируется зачаток, схожий на тот, что появляется у эмбриона;
  • далее происходит процесс его роста, развития и прорезывания, что по ощущениям должно напоминать подобный период в детстве.

Очевидно, что такой способ выращивания зубов из стволовых клеток максимально напоминает естественное их появление. В результате единица образуется полностью сформированная, на своем месте и имеет все структурные элементы.

Но здесь также есть ряд недостатков в практическом использовании метода:

  • С каждым годом у человека становится все меньше стволовых клеток, и если в 25 лет их еще может быть 1 на 100 тысяч, то в более зрелом возрасте обнаруживается только 1 на 500 000.
  • Само изъятие такой клетки оказывается затруднительным и очень болезненным процессом. Заданием для ученых пока является обнаружение более простого способа для забора материала.
Читать еще:  После установки брекетов

Проводимые эксперименты

Самые удачные разработки по выращиванию зубов показали, что это сделать возможно, так как уже есть определенные достижения:

  • сформированная, таким образом, коронка полностью отвечает естественной структуре;
  • анатомическое строение выращенного зуба также соответствует природному и содержит все нужные элементы – нервно-сосудистый пучок, пульпу, дентин и эмаль;
  • твердость и прочность образованных тканей настолько высокая, что дает возможность выполнять все функциональные нагрузки челюсти.

Но недостатком пока остается размер выросшей единицы, который получается немного меньшей по объему. Тем не менее исследователи не останавливаются на достигнутом и придумывают новые технологии по максимально естественному восстановлению зубного ряда.

Методики

Сами способы по выращиванию твердых тканей можно разделить на:

  1. Внешние – при котором формируют единицу за пределами ротовой полости, например, в пробирке или особых клетках, гелях и пр. И только, когда зуб вырос, его пересаживают в пустующую лунку.
  2. Внутренние – стволовые клетки, выделенные, например, из утраченных молочных зубов, вводят под слизистую. И уже в десне происходит развитие и рост целой единицы. Правда, этот метод считается не до конца проработанным и достаточно длительным.

Среди наружных способов особо выделяют два:

  • Когда процесс выращивания зуба происходит в органической культуре. Для этого берут мезенхимальные и эпителиальные клетки и помещают их в коллагеновый каркас. Именно здесь будет формироваться зачаток. Время роста зуба составляет около двух недель. Но при этом он полностью сформирован и имеет весь анатомический комплекс элементов.
  • С помощью специальной пробирки, в которую помещают те же клетки для формирования зубного зачатка. После определенного этапа его перекладывают уже в капсулу и внедряют в печень мыши.

Кроме генных технологий, некоторые ученые предлагают совершенно инновационные психо-социальные способы перепрограммирования. К ним относятся:

  1. Метод Петрова – при этом пациент узнает о точном строении зуба, его корневой системе и структуре коронки. Затем он мысленно помещает стволовую клетку костного мозга в то место, где следует нарастить зуб и представляет весь процесс формирования зачатка и рост единицы.
  2. Способ Веретенникова во многом схож с предыдущим, но здесь нужно учитывать не только строение зуба, но и правильность их прорезывания, очередность появления – от нижних резцов и до больших коренных, в строгой природной последовательности. Ученый предлагает мысленно представлять прорастание маленького зуба, как семени, создавая в нужном месте ощущения давления.
  3. Технология Столбова – ученый, который на своем опыте показал, что воздействием мысли можно вырастить хоть 17 зубов подряд! Помимо создаваемой мыслеформы, параллельно с этим следует отказаться от вредных привычек, похудеть и научиться прислушиваться к своему организму.
  4. Метод Шичко – предполагает использование самовнушения в период засыпания и правдивой информации. За счет письменных установок, которые пациент совершает перед сном в своем личном дневнике, можно заставить восстановить работу любого внутреннего органа, в том числе и утраченного зуба. Главное – планомерное воздействие на подсознание.

Среди новых разработок также выделяются еще две:

  • Использование ультразвука, когда с его помощью стимулируют десну и альвеолярный отросток к наращиванию твердой ткани. За счет такого своеобразного массажа можно заставить клетки функционировать в нужном направлении.
  • Лазерная коррекция – помимо безболезненных операций по заживлению различных органов, с его помощью можно стимулировать появление желаемых клеток и их рост. Таким образом, происходит полная регенерация тканей и восстановление утраченного зуба.

Какие побочные эффекты?

Пока все лабораторные эксперименты не вошли в ежедневную практику стоматологов, так как имеют множество недоработок, побочных явлений, а иногда и непредвиденных результатов. Самыми важными деталями, над которыми еще следует потрудиться, являются такие сомнительные моменты:

  1. Сложно контролировать темпы роста единицы и ее элементов. Случается так, что дентин образуется намного быстрее, чем нервно-сосудистый пучок пульпы.
  2. Возможно появление патологических форм и строения самой коронки, что в дальнейшем обязательно повлияет на функциональность зуба и на здоровье ротовой полости в целом.
  3. Наш организм с развитой иммунной системой, скорее всего, будет реагировать на внедрение выращенного зуба или зачаток из стволовых клеток, как на инородное тело. Поэтому велики риски его отторжения. А чтобы снизить такой эффект человеку придется принимать препараты, значительно снижающие уровень иммунитета, что может привести к ослаблению здоровья на длительный период.

Мнения критиков

Не весь ученый мир придерживается таких оптимистических прогнозов по возможности выращивания полноценного зуба во рту пациента. Еще многие из них скептически относятся даже к успешным разработкам и результативным экспериментам. Они утверждают, что если в некоторых условиях удалось нарастить у мыши какие-то отдельные единицы, то это не значит, что то же самое получится и с человеком.

Никто не сможет предугадать, как поведут себя стволовые клетки в десне, образуют ли они нужный зуб в желаемом месте, да еще и правильной формы. Невозможно предвидеть, как будет реагировать организм отдельно взятого человека на вживление таких клеток или целой выращенной единицы. Даже эксперименты с пересадкой зубов с одной челюсти на другую у человека не принесли желаемого результата, показав очень низкий процент приживаемости.

Самым же сомнительным вопросом остается – как повлиять на структуру и форму зуба, который требуется вырастить? Ведь стволовые клетки не знают, нужен нам резец, моляр или клык. Что вырастет и правильно ли это произойдет?

Видео: ученые начали выращивать зубы в пробирке.

Когда будет доступна процедура?

Те ученые, которые пока воодушевлены результатами экспериментов, обещают скорое решение проблемы. Так, японские разработчики считают, что продвинулись уже достаточно далеко в своих технологиях, и осталось только дифференцировать создаваемые зачатки, чтобы точно рассчитывать в каком альвеолярном отростке вырастет подходящая единица.

Они обещают, что уже к 2030 году смогут предоставить полноценные и эффективные результаты по выращиванию зубов из стволовых клеток и распространить свой метод в массы. Именно их разработки должны полностью вытеснить современное протезирование и имплантацию.

Цена процедуры

Предугадать стоимость такого способа восстановления улыбки достаточно сложно, так как его пока нигде не проводят. Но медики приблизительно рассчитывают на окончательную сумму исходя из отдельных процедур, необходимых для этого.

Так, стоимость извлечения стволовых клеток находится в районе 1000 евро. Если же к этому добавить необходимые инъекции, дополнительные материалы и прочие проводимые процедуры, то можно оценить весь процесс выращивания зуба у человека в 3000 евро, что значительно дороже имплантации.

При появлении такого способа восстановления зубного ряда, воспользоваться им смогут только те, кто финансово обеспечен. Большей части населения она окажется недоступной. Пока в некоторых клиниках предлагаются экспериментальные процедуры по выращиванию единиц, но пациент должен не только заплатить 3000 евро за нее, но и подписать согласие на то, что готов к неожиданным результатам.

stsvv

Стоматология. Понятная и Доступная.

Лучший блог о стоматологии и имплантации зубов

Признаться, меня очень даже достали подобного рода сенсации, периодически появляющиеся даже в очень серьезных изданиях. А еще интереснее всякого рода конспирологические теории, типа: “Стоматологи специально тормозят внедрение выращивания зубов из стволовых клеток, поскольку боятся остаться без работы”.
Помилуйте, но если заниматься этим будут не стоматологи, то кто будет выполнять подобные процедуры?

Давайте трезво взглянем на технологию “выращивания зубов” из стволовых клеток и оценим ее перспективы.

Мало кто знает, что зубы – это производные эпителиальных тканей. Да, зубы имеют общее с волосами, ногтями и мозгами происхождение. Причем формируются зубы весьма и весьма специфично.

Вы знаете, что зуб состоит из твердых и мягких тканей. Мягкая ткань – это пульпа, проще говоря “нерв”, который находится внутри зуба, в специальной полости. Пульпа имеет мезенхимальное происхождение, другими словами, образуется из абсолютно другого эмбрионального листка и не имеет ничего общего с эмалью или цементом.
Пульпа содержит в своем составе клетки-одонтобласты, формирующие дентин, а также питающие их сосуды и нервные волокна.
Пока происходит формирование зубов, одонтобласты продуцируют т. н. первичный дентин. После прорезывания зубов этот процесс идет очень медленно (образуется вторичный дентин), а в случае каких-либо повреждения зуба, ответной реакцией служит образование третичного дентина со стороны повреждения.
Другими словами, дентин способен к регенерации, поскольку клетки-одонтобласты остаются на протяжение всей жизни в пульпарной камере.

Основа зуба, как по объему так и по весу – это дентин. Он представляет из себя пористую твердую ткань, что-то вроде сотовой конструкции, в каналах которых находятся отростки одонтобластов. Как только кариес достигает дентина, инфекция очень-очень быстро распространяется по этим самым дентинным канальцам и в пульпе зуба возникает воспаление, которое мы называем пульпитом. Именно поэтому для развития пульпита ДАЛЕКО НЕ ВСЕГДА требуется прямое сообщение кариозной полости с пульпарной камерой зуба.

Читать еще:  Отбеливание зубов показания и противопоказания

Эмаль зуба – самая твердая ткань человеческого организма. Она намного тверже стали и испытывает ни с чем несопоставимые нагрузки.
Эмаль формируют клетки-амелобласты, которые, в отличие от одонтобластов, присутствуют только в период формирования зуба в зубном зачатке, а после прорезывания зуба исчезают.
Именно поэтому эмаль не регенерирует и не восстанавливается при повреждении (например, при кариесе).
Зубная эмаль с микроскопической точки зрения устроена очень сложно. Она состоит из трехмерно закрученных так называемых эмалевых призм, строение которых во многом определяет ее прочность и резистентность к кариесу.
Эмаль покрывает коронковую часть зуба, придает ей характерный цвет и прозрачность. Поэтому первым признаком повреждения эмали, нарушения ее строения, служат изменение цвета и прозрачности зубов.

Корень зуба покрыт цементом. Цемент тверже дентина, но значительно мягче эмали. Цемент формируется в период формирования зубов клетками-цементобластами, незначительное количество которых остается в пародонте и после прорезывания зубов. Цемент, как и эмаль, не способен к регенерации.
В цемент корня вплетаются волокна пародонта – очень прочные соединительнотканные связки, которые как бы подвешивают зуб в лунке. Другими словами, здоровый зуб вообще не контактирует с костью напрямую.
Пародонт нужен для амортизации жевательной нагрузки, также с его помощью происходит питание цемента корня зуба.

Цементобласты, как и амелобласты, имеют эпителиальное происхождение.

Для чего я все это Вам рассказываю? Чтобы Вам стало ясно, насколько сложно устроен каждый Ваш зубик и сколько тканей и клеток участвует в его формировании и развитии. Стало быть, чтобы воссоздать полноценный зуб из стволовых клеток, нам необходимо провести весь процесс формирования зуба в пробирке.

Теперь немного о стволовых клетках.

Сейчас даже школьники знают, что стволовая клетка – это такая протоклетка, из которой можно получить любую клетку организма. И что в нашей крови содержится энное количество этих самых стволовых клеток в “спящем” состоянии.

То есть, чтобы вырастить из стволовых клеток что-то похожее на орган или ткань, нам необходимо:

а) выделить нужное количество стволовых клеток из крови.
б) заставить стволовую клетку дифференцироваться в нужном направлении. Другими словами, нужно сделать что-то, чтобы она при делении превращалась в нужную нам клетку – гепатоцит, остеобласт, амелобласт, нейрон и т. д.

И, если с первой задачей современная наука более-менее справляется, то вторая задача представляет собой серьезную проблему.

Некоторое время назад были открыты медиаторы – особые гормоноподобные вещества, влияющие на дифференцировку клеток. Обработав культуру стволовых клеток нужным медиатором, можно заставить превратиться ее в печеночную, почечную или хрящевую ткань – все зависит от того, какой медиатор используется.
Так вот, наш организм состоит из сотен различных клеток, а медиаторы открыты лишь для некоторых из них. Например, известны медиаторы, заставляющие превращаться стволовую клетку в гепатоцит (основная ткань печени) или эритроцит.

Есть и другой способ заставить стволовые клетки делиться в нужном направлении. Например, подсадить культуру стволовых клеток прямо в орган и ждать, что из этого получится. Именно на этом способе основана т. н. “терапия стволовыми клетками”, которая сейчас широко пиарится в медицине. О клинической и достоверной эффективности подобных методик говорить сложно, поскольку еще неясно, вырастает там что-нибудь, если вырастает вообще.
Поэтому, если Вы когда-нибудь столкнетесь с “клеточной терапией”, особенно в косметологии – будьте осторожны. Ну об этом мы как-нибудь поговорим отдельной темой.

Вернемся к нашим баранам зубам.

Если мы хотим воссоздать полноценный зуб, нам необходимо заставить стволовые клетки делиться в нужном направлении. Так, чтобы из них получились:
1. Амелобласты
2. Цементобласты
3. Одонтобласты
4. Фибробласты пульпы, клетки сосудов, нервные волокна пульпы
5. Фибробласты пародонта

Причем, наша цель – не бесформенная культура клеток. а создание органа определенной формы.
В этом плане вырастить из стволовых клеток печень или почку значительно легче, нежели зуб. Поскольку от формы печени, будь она круглая или квадратная, не зависит ее работоспособность, в то время как функциональность зуба определяется, прежде всего, его формой.

И вот тут появляется еще одна проблема. Все зубы (а их, если Вы помните, тридцать два) имеют разную форму, хотя и не отличаются в клеточном строении друг от друга. Как сделать из выращиваемого зуба именно клык или большой коренной зуб? Что определяет его форму и назначение? Этот вопрос пока остается открытым и по нему нет однозначного мнения.

Ну, допустим, нам удалось вырастить зуб нужной формы и размера. И он не просто идентичен настоящему зубу. Он живой! И теперь его надо пересадить в место отсутствующего зуба.

Некоторое время я занимался аутотрансплантацией зубов. То есть, пересаживал восьмерки на место удаленных шестых зубов и наблюдал, что из этого получится. Подробнее об этом Вы можете почитать здесь>>. Клинического распространения данная методика не получила и не получит (из-за низкой клинической эффективности), поэтому мои работы в этом направлении можно отнести скорее к науке, нежели к практике.

Также мне часто приходится иметь дело с вывихнутыми зубами. И могу сказать, что даже при идеальном соответствии зуба лунке процесс приживления идет успешно далеко не всегда. Хотя, иногда все получается очень даже хорошо.

Понятное дело, что реплантировать вывихнутый зуб или же пересадить зуб мудрости в заранее подготовленную лунку значительно проще, нежели интегрировать зуб, выращенный в пробирке. Однако, мы до сих пор не научились вживлять вывихнутые зубы со стопроцентной гарантией, не говоря уже о пересадке собственных зубов! О каком вживлении выращенных искусственно зубов может идти речь?

То есть, если даже будут преодолены все препятствия и мы сможем вырастить зубы в пробирке, то проблема интеграции этих зубов в живой организм останется неразрешенной.

ОДНАКО, есть выход. можно пересаживать не выращенный зуб, а, скажем, зубной зачаток на ранней стадии. А потом просто подождать, когда зуб прорежется. Вроде как все очень просто, но. и здесь возникает ряд неразрешимых пока сложностей.
Во-первых, пока нет возможности стимулировать развитие зубных зачатков и рост зубов. Исследования в этой области ведутся, но с переменным успехом.
Во-вторых, возникает вопрос дифференцировки самих зубов. Будет обидно, если из зачатка, пересаженного на место отсутствующего резца, вырастет зуб мудрости или что-нибудь подобное.
В-третьих, как организовать питание зачатков? В естественных условиях, их кровоснабжение обеспечивается сетью тонких сосудов, превращающихся потом сосудисто-нервный пучок пульпы. Как это сделать что-то подобное – очень-очень сложный вопрос, неразрешимый даже в обозримом будущем.

Сейчас периодически появляются сообщения о выращенных из стволовых клеток зубах, которые были успешно пересажены тем же мышам. И вроде как эти зубы даже работают.
Но. есть несколько нюансов, о которых в прессе не сообщают, либо сообщают вскользь.

Во-первых, эти самые экспериментальные зубы выращивают на керамической матрице. Так будущие зубы дифференцируют и задают им форму.
Во-вторых, в этих зубах отсутствует дифференцировка тканей. То есть, в них нет пульпы, эмали, цемента и т. д. Это просто керамический каркас, наполненный фибробластами. И полноценными зубами их назвать нельзя.
В-третьих, зубочелюстной аппарат мышей существенно отличается от зубочелюстной системы человека. Хотя бы тем, что у грызунов зубы растут в течение всей жизни, а следовательно способности к регенерации и восстановлению зубной ткани у них выше.
В-четвертых, не было сообщений о выращивании и пересадке грызунам функционально активных зубов (тех, которые действительно используются в жевании), например резцов. Обычно пытаются вырастить и пересадить моляры, премоляры, функциональность которых у мышей (в отличие от человека) не высока.

Следовательно, эти технологии в практической медицине не применимы и имеют прикладное научное значение.

Ну и, последнее – цена вопроса.
Я думаю, вряд ли выращивание зубов будет востребовано в широкой медицинской практике хотя бы из-за стоимости технологии. Посмотрите, сколько сейчас стоит дентальная имплантация и сколько труда и времени она занимает. С зубами из стволовых клеток все будет в разы сложнее и дороже. И если сейчас стоимость операции дентальной имплантации в Москве составляет, в среднем, тысячу долларов США, то в нашем случае столько будет стоить один только забор стволовых клеток. И это, заметьте, самая дешевая по себестоимости процедура.

Поэтому, выращивание зубов из стволовых клеток, аки редиски на грядке – удел далекого-далекого будущего. И даже если подобная технология станет возможной лет эдак через пятьдесят-сто, то вряд ли мы сможем себе позволить зубы, выращенные в пробирке, ибо цена их будет очень велика.

Так что берегите то, что есть! А если чего не хватает, подумайте о дентальной имплантации. Обозримое стоматологическое будущее – именно за этим перспективным направлением.

Руководство по выращиванию зубов

Тканевую инженерию в стоматологии применяли еще в эпоху фараонов: древнейшие известные зубные имплантаты найдены археологами именно в Египте. Среди них есть и зубы, которые были реимплантированы женщине на место утерянных и частично интегрировались с живой тканью. В мужской челюсти обнаружился искусственный зуб, мастерски вырезанный из раковины моллюска еще 5500 лет назад. Но несмотря на внушительный срок, полноценного лечения пациента с адентией, то есть полной или частичной потерей зубов, не существует до сих пор.

Читать еще:  Брекеты эластики сколько носить

История вопроса

около 330 до н.э.

Аристотель описывает регенерацию кончика хвоста у ящерицы.

В костном мозге найдены два типа стволовых клеток: гемопоэтические предшественники кровяных телец и мезенхимальные предшественники костной и хрящевой ткани, включая зубы.

Впервые выделены и выращены «в пробирке» эмбриональные стволовые клетки мышей.

Стволовые клетки обнаружены в зубной пульпе человека.

Успешная изоляция и культивирование в лаборатории эмбриональных стволовых клеток человека.

Показано, что мезенхимальные стволовые клетки в пульпе способны регенерировать дентиноподобные тканевые комплексы.

Удается выделить популяцию стволовых клеток из еще живых остатков разрушенного зуба.

Обнаружение стволовых клеток в периодонтальной связке, которая удерживает зуб на месте.

Зрелые дифференцированные клетки мышей успешно «перепрограммированы» в стволовые (индуцированные плюрипотентные) клетки.

Индуцированные плюрипотентные стволовые клетки получены из фибробластов человека.

Из стволовых клеток пульпы на искусственном скаффолде выращены дентиноподобные комплексы.

Свои или искусственные

Ортопедические конструкции и имплантаты до некоторой степени компенсируют функции утраченного зуба, однако у этих искусственных заменителей отсутствуют сосуды, нервные окончания и рецепторы. Кроме того, они не образуют периодонтальную связку — слой соединительной ткани между корнем зуба и костью, формирующей стенку лунки. Периодонт способствует закреплению зуба в альвеоле и обеспечивает его механическую устойчивость: сила жевательных мышц человека составляет целых 390 кг, и связка распределяет это давление между зубами.

В отличие от зуба, имплантат неподвижен, а развитие вокруг него соединительной ткани часто заканчивается воспалением (периимплантитом) и требует удаления искусственного зуба. Кроме того, имплантат не может быть соединен в одну конструкцию с зубами пациента как раз из-за неспособности адекватного распределения давления ввиду отсутствия периодонта. Наконец, имплантированный заменитель требует куда более внимательного отношения к гигиене полости рта, что снова возвращает нас к основному источнику наших проблем, «человеческому фактору». Очевидно, идеальным решением была бы технология выращивания настоящих живых зубов, а не пересадка искусственных. Так давайте перейдем к делу.

Самый ранний признак развития зубов — образование дентальной пластинки, подковообразного утолщения эпителия, которое тянется вдоль верхней и нижней челюстей эмбриона. Пройдя через несколько этапов, она образует корни отдельных зубов. Координацию этого процесса обеспечивают как минимум четыре эпителиальных сигнальных центра, клетки которых выделяют вещества, регулирующие формирование зуба.

Все перечисленное выше пригодится нам и для создания новых зубов методами тканевой инженерии. «Рецептура» выращивания любой биологической ткани требует трех базовых компонентов: стволовых клеток, внеклеточного матрикса (скаффолда, который предоставляет опору для развивающихся клеточных структур) и, наконец, факторов роста, объединенных в необходимые для развития зуба сигнальные пути. Пойдем по порядку и начнем с главных героев — стволовых клеток, обладающих одонтогенной компетентностью и способных развиться в ткани зубов.

Дентальные стволовые клетки

В отличие от большинства зрелых клеток, стволовые клетки способны проходить через множество делений и понемногу специализироваться, формируя клетки разных типов. Эмбриональные стволовые клетки тотипотентны и могут превратиться в любой из более чем 200 видов клеток взрослого организма. Постнатальные стволовые клетки сохраняются и в тканях взрослого организма. Они мультипотентны, то есть способны дать начало лишь определенным типам клеток, и локализуются в соответствующих тканях, будь то костный мозг, кровеносные сосуды, печень, кожа или дентальные ткани.

В зависимости от локализации дентальные стволовые клетки (ДСК) подразделяются на стволовые клетки пульпы, удаленных молочных зубов, периодонтальной связки, десны, клетки предшественников зубного фолликула Это дает нам немало возможностей их заполучить. Стволовые клетки пульпы можно выделить прямо из удаленных зубов — это удобный и перспективный источник ДСК, подходящих для восстановления как дентина, пульпы и цемента, так и костной ткани. Помимо этого, они проявляют выраженную нейрорегенеративную активность, ингибируя гибель нейронов, астроцитов и олигодендроцитов после травмы, ускоряя восстановление поврежденных аксонов. Популяция стволовых клеток удаленных молочных зубов может дифференцироваться в клетки костной и нервной тканей, а ДСК десны подходят для восстановления пародонта, мышц и даже сухожилий.

Механизмы развития одонтогенных стволовых клеток окончательно не выяснены, однако идентифицировано уже более 200 работающих в них генов. Понятно, что каждый тип ДСК имеет свои особенности, которые обещают им применение не только в стоматологии, но и в других областях медицины. Другим ресурсом стволовых клеток для выращивания зубов остаются индуцированные плюрипотентные стволовые клетки (ИПСК), полученные «перепрограммированием» взрослых дифференцированных клеток за счет обработки специальным коктейлем сигнальных молекул. Ученые продолжают развивать безопасные методы создания ИПСК и их использования.

Межклеточный матрикс

Но ресурс стволовых клеток для выращивания зубов еще даже не полдела. Для развития и образования сложной структуры зрелой ткани требуется опора, скаффолд из молекул межклеточного матрикса: именно он поддерживает прикрепление, миграцию и пространственную организацию клеток. Просветы и поры в нем обеспечивают движение клеток, ростовых факторов и обмен веществ. Искусственный скаффолд должен быть прост в использовании, обладать биосовместимостью, способностью к деградации в организме и низкой иммуногенностью, хорошими механическими свойствами

Среди синтетических материалов для формирования скаффолда стоит упомянуть «биоактивное» стекло, которое может срастаться с биологическими тканями, полимолочную кислоту и композиты на основе металла, керамики или полимеров. Все они позволяют изготовлять скаффолды необходимой формы, хотя их применение остается весьма ограниченным из-за низкой биосовместимости и токсичности. В противоположность им натуральные биоматериалы для скаффолдов — такие как коллаген, хитозан или гиалуроновая кислота — биосовместимы и легко биодеградируются. Однако они менее прочны и способны вызывать реакции отторжения.

В любом случае идеальным материалом для скаффолда будет структура, полученная непосредственно из натуральных полимеров внеклеточного матрикса или из их синтетических аналогов. Росшие на таком скаффолде стволовые клетки пульпы и периодонта при обработке соответствующими сигнальными веществами успешно развивались в одонтогенном направлении — к образованию тканей зуба. Впрочем, к этому мы еще вернемся, а пока нам нужен третий вид ингредиентов.

Сигнальные пути

Стволовые клетки — наш основной ресурс, скаффолд — основа его развития, но дирижировать их взаимодействием должны сигнальные молекулы, включая факторы роста и интерферирующие РНК. Факторы роста — это молекулы пептидов, передающие сигналы для управления клеточным поведением через воздействие на специфические рецепторы на поверхности клеток. Они обеспечивают взаимосвязь и взаимодействие между клетками, а также между ними и внеклеточным матриксом. Так, если кариозная полость оказалась близко к чувствительной пульпе или у пациента наблюдается повышенная стираемость зубов, соответствующие факторы роста запускают образование вторичного и третичного дентина. Идентифицирован и целый ряд факторов роста, действующих во время развития зубов, таких как костный морфогенетический белок (BMP), тромбоцитарный фактор роста (PDGF) и фактор роста фибробластов (FGF). Их доставляют к стволовым клеткам с помощью наночастиц или через сам скаффолд, заполняя его нужным набором молекул.

Для контроля над дифференцировкой клеток используют и молекулы интерферирующей РНК. Они связываются с матричной РНК и останавливают синтез того или иного белка. Для целевой доставки такую РНК превращают в ДНК и в виде плазмиды переносят в клетку. Теперь у нас есть все необходимое для получения зуба: дентальные стволовые клетки (в ассортименте), скаффолд (продукт, идентичный натуральному) и факторы роста (по вкусу).

Рецепт готов

Базовые принципы тканевой инженерии зубов уже разработаны, и попытки перейти к применению на практике предпринимаются больше полутора десятков лет. Пионерами в выращивании зубов можно назвать английских ученых, которые приступили к таким исследованиям еще в 2002 году. И хотя их эксперименты по регенерации твердых зубных тканей особого результата не принесли, уже вскоре ученые из команды Такаши Цуи провели более успешные опыты, продлившиеся около двух лет. После решения ряда проблем им удалось выделить дентальные стволовые клетки из мышиных эмбрионов, «собрать» из них биоинженерный зачаток, вырастить из него полноценный зуб и имплантировать его в челюсть мыши.

Протокол, подготовленный японскими специалистами в ходе этой работы, стал одним из ключевых руководств, которыми пользуются ученые для экспериментов в области тканевой инженерии. На него опирались и российские ученые из стоматологического университета имени Евдокимова (МГМСУ): в 2017 году им удалось провести собственные успешные опыты по выращиванию мышиных зубов. Человеческие зубы более сложны и громоздки, и вырастить их пока не удается. Остаются нерешенными проблемы, связанные с иннервацией и кровоснабжением «биоинженерного» зуба, его связочным аппаратом, а главное — с выбором пула стволовых клеток.

Дело в том, что получить человеческие ДСК можно из здорового зуба (повредив его) или из зуба с удаленной пульпой. Доступные же клетки — такие, как стволовые клетки десны, — не обладают одонтогенной способностью. Научиться получать нужные ДСК из имеющихся ресурсов или индуцированных плюрипотентных стволовых клеток пока только предстоит. Однако нет сомнений в том, что через некоторое время биоинжиниринг зубов поможет и взрослым, и детям окончательно забыть о трепете перед визитом к стоматологу.

Ссылка на основную публикацию
Adblock
detector